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The NoSQL Movement
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History of the World, Part 1
n Relational Databases – main stay of business
n Web-based applications caused spikes

n Especially true for public-facing e-Commerce sites
n Developers begin to front RDBMS with memcache or 

integrate other caching mechanisms within the application 
(ie. Ehcache)
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Big picture overview

n Client requests are
handled in the “first
tier” by
n PHP or ASP pages
n Associated logic

n These lightweight 
services are fast
and very nimble

n Much use of 
caching:
the second tier
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Scaling Up

n Issues with scaling up when the dataset is just too big
n RDBMS were not designed to be distributed
n Began to look at multi-node database solutions
n Known as ‘scaling out’ or ‘horizontal scaling’
n Different approaches include:

n Master-slave
n Sharding
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Scaling RDBMS – Master/Slave
n Master-Slave

n All writes are written to the master. All reads performed 
against the replicated slave databases

n Critical reads may be incorrect as writes may not have been 
propagated down

n Large data sets can pose problems as master needs to 
duplicate data to slaves
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Scaling RDBMS via various Sharding approaches
n Vertical Partitioning: 

n Have tables related to a specific feature sit on their own server  
n May have to rebalance or reshard if tables outgrow server

n Range-based Partitioning:
n When a single table cannot sit on a server, split the rows (aka 

horizontal partitioning) of the table onto multiple servers based on 
some value range of a column/key

n Key/Hash-based Partitioning
n Input a Key value to a Hash and use the resultant hash output 

as entry into multiple servers
n Directory-based Partitioning

n Have a lookup service that has the knowledge of the 
partitioning scheme

n This allows for the adding of servers or changing of partition 
scheme without changing the application

Source: http://adam.heroku.com/past/2009/7/6/sql_databases_dont_scale
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Scaling RDBMS – Sharding (cont’d)
n Partition or Sharding

n Scales well for both reads and writes
n Not transparent, application needs to be partition-aware
n Can no longer have relationships/joins across partitions
n Loss of referential integrity across shards
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Other ways to scale RDBMS
n Multi-Master replication
n INSERT only, not UPDATES/DELETES
n No JOINs, thereby reducing query time

n This involves de-normalizing data
n In-memory databases
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What is NoSQL?
n Stands for Not Only SQL
n Class of non-relational data storage systems
n Usually do not require a fixed table schema nor do they use 

the concept of joins
n All NoSQL offerings relax one or more of the ACID  

properties

Note:
ACID = Atomicity, Consistency, Isolation, Durability
BASE = Basic Availability, Soft-state, Eventual consistency
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How did NoSQL become popular ?

n Explosion of social media sites (Facebook, Twitter) 
with large data needs

n Rise of cloud-based solutions such as Amazon S3 
(simple storage solution)

n Just as moving to dynamically-typed languages 
(Ruby/Groovy), a shift to dynamically-typed data with 
frequent schema changes

n Open-source community
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Seeds of the NoSQL movement
n Three major papers were the seeds of the NoSQL 

movement:
n BigTable (Google)
n Dynamo (Amazon)

n Gossip protocol (discovery and error detection)
n Distributed key-value data store
n Eventual consistency

n CAP Theorem: which states that Strict Consistency can't 
be achieved at the same time as availability and 
partition-tolerance.
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Why NoSQL and Why Not ?
n For data storage, an RDBMS cannot be the be-all/end-all
n Just as there are different programming languages, need to 

have other data storage tools in the toolbox
n A NoSQL solution is more acceptable to a client now than 

even a year ago BUT you should hear the arguments from 
the other side, e.g. Prof. M. Stonebraker:

n M. Stonebraker, “The NoSQL discussion has nothing to do with SQL,”
Blog@ACM,http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-
nothing-to-do-with-sql/fulltext

n M. Stonebraker, “New SQL: An alternative to NoSQL and Old SQL for new OLTP 
Apps,” Blog@CACM, Jun 2011, http://cacm.acm.org/blogs/blog-cacm/109710-new-
sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext

n M. Stonebraker, “OldSQL vs. NoSQL vs. NewSQL on New OLTP,” Usenix LISA 
2011, https://www.usenix.org/legacy/events/lisa11/tech/

n There are recent research success in building Scalable, Fully-ACID 
compliant transactional distributed database systems, e.g. the Calvin 
system from Yale and the “Coordination Avoidance” work by P. Bailis et 
al of Berkeley/Stanford in VLDB2015.

mailto:Blog@ACM,http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
http://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
https://www.usenix.org/legacy/events/lisa11/tech/
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Consistency Model

n A consistency model determines rules for visibility and 
apparent order of updates.

n For example:
n Row X is replicated on nodes M and N
n Client A writes row X to node N
n Some period of time t elapses.
n Client B reads row X from node M
n Does client B see the write from client A?
n Consistency is a continuum with tradeoffs
n For NoSQL, the answer would be: maybe

n e.g.,  Amazon statement of “Usually ships within 2 days”
as it cannot prevent the last copy of an item to be sold multiple 

times !
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What kinds of NoSQL ?
n NoSQL solutions fall into two major areas:

n Key/Value Store or ‘the big hash table’.
n Amazon S3 (Dynamo)
n Voldemort
n Scalaris
n Memcached (in-memory key/value store)
n Redis 

n Schema-less which comes in multiple flavors, column-based, 
document-based or graph-based.

n Cassandra
n CouchDB (document-based)
n MongoDB(document-based)
n Neo4J (graph-based)
n HBase 

n Different NoSQL DBs do support different Consistency 
Models, e.g. 
n BigTable/HBase: “Strong Consistency” ;
n Dynamo: Eventual Consistency
n Cassandra: User-Tunable (e.g. setting the N,R,W parameters)
n Basic version of Memcached: None 
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Key-Value Store
Pros:

n very fast
n very scalable
n simple model
n able to distribute horizontally

Cons: 
- many data structures (objects) can't be easily modeled as key 

value pairs
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Schema-Less

Pros:
- Schema-less data model is richer than key/value 

pairs
- Support different type of consistency model:

strict, eventual, or none.
- many are distributed
- still provide excellent performance and scalability

Cons: 
- typically no ACID transactions or joins 
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Common Advantages

n Cheap, easy to implement (open source)
n Data are replicated to multiple nodes (therefore 

identical and fault-tolerant) and can be partitioned
n Down nodes easily replaced
n No single point of failure

n Easy to distribute
n Don't require a schema
n Can scale up and down
n Relax the data consistency requirement (CAP)
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What am I giving up?
n joins
n group by
n order by
n ACID transactions
n SQL as a sometimes frustrating but still powerful query 

language
n But that’s also changing with Integration support of High-level query 

language/systems like Hive/HiveQL
n easy integration with other applications that support SQL
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Yet Another Comparison of Cloud Datastores

Source: Bill Howe, U. of Washington at Seattle, circa May 2013
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BigTable from Google
(and its open-source version: HBase) 
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Why Bigtable/HBase ?
n Performance of RDBMS system is good for 

transaction processing but for very large scale
analytic processing, the solutions are commercial, 
expensive, and specialized.

n Very large scale analytic processing
n Big queries – typically range or table scans.
n Big databases (100s of TB)
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Why BigTable/HBase ?
n If You need Random Write/Read or both on a large 

amount of data (remember GFS/HDFS not good 
with random access)

n Distributed storage
n Table-like in data structure 

n multi-dimensional map
n High scalability
n High availability
n High performance (1000’s of operations/sec on 

Multiple TB of Data)
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Data Model
n Data is divided into various Tables
n Table is composed of Columns, Columns are grouped into Column 

Families (CF)
n A Table is a sparse, distributed, persistent multidimensional sorted 

Map
n Map indexed by a Row key, Column key, and a Timestamp

n (row:string, column:string, time:int64) ® uninterpreted byte array

n Supports lookups, inserts, deletes - Single row transactions only
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Rows and Columns
n Rows maintained in sorted lexicographic order

n Applications can exploit this property for efficient row 
scans

n Row ranges dynamically partitioned into tablets
n Columns grouped into column families

n Column key = family:qualifier
n Column families provide locality hints
n Unbounded number of columns
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Bigtable Building Blocks
n GFS

n Provide raw, fault-tolerant storage for log and data files 
n Chubby

n A distributed lock manager
n Based on the Paxos (distributed consensus algorithm) to 

keep replicas to be consistent even in the presence of 
failures

n SSTable
n A customized file format for storing Big Table data
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Chubby
n Provide distributed lock service
n Five active replicas, among them, one is elected as the 

master and serve the service requests
n Run Paxos algorithm to provide consistency even under 

replica failures
n Each directory or file is used as a lock to support atomic 

Reads and Writes from/to a file
n Each Chubby client maintains a session with the Chubby 

service
n When the session of the client expires, it loses any locks and open 

handles

Use of Chubby:
n Store Bootstrap location
n Discover Tablet servers
n Store BigTable Schema information
n Store access control list
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SSTable

n Basic building block to hold data in Bigtable
n Persistent, ordered immutable map from keys to values

n Stored in GFS

n Sequence of blocks on disk plus an index for block lookup
n Can be completely mapped into memory

n Supported operations:
n Look up value associated with key
n Iterate key/value pairs within a key range

Index

64K 
block

64K 
block

64K 
block

SSTable

Source: Graphic from slides by Erik Paulson
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Tablet
n Dynamically partitioned range of rows
n Built from multiple SSTables
n Data distribution and Load Balancing are 

performed at the granularity of Tablet

Index

64K 
block

64K 
block

64K 
block

SSTable

Index

64K 
block

64K 
block

64K 
block

SSTable

Tablet Start:aardvark End:apple

Source: Graphic from slides by Erik Paulson
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Table
n Multiple tablets make up the table
n SSTables can be shared

SSTable SSTable SSTable SSTable

Tablet
aardvark apple

Tablet
apple_two_E boat

Source: Graphic from slides by Erik Paulson
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System Architecture of Big Table
n Client library
n Single Master server

n Assigns tablets to tablet servers
n Detects addition and expiration of tablet servers
n Balances tablet server load
n Handles garbage collection
n Handles schema changes

n Tablet servers
n Each tablet server manages a set of tablets

n Typically between ten to a thousand tablets
n Each 100-200 MB by default

n Handles read and write requests to the tablets
n Splits tablets that have grown too large
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Tablet Location

Upon discovery, clients cache tablet locations

Image Source: Chang et al., OSDI 2006

n 1st level: Root Tablet contains location of all tablets
n 2nd level: Metadata Tablet contain locations of user 

tablets
n 3rd level: User Tablets storing the actual user data



NoSQL 34

Tablet Assignment
n Master keeps track of:

n Set of live tablet servers
n Assignment of tablets to tablet servers
n Unassigned tablets

n Each tablet is assigned to one tablet server at a 
time
n Tablet server maintains an exclusive lock on a file in 

Chubby
n Master monitors tablet servers and handles assignment

n Changes to tablet structure
n Table creation/deletion (master initiated)
n Tablet merging (master initiated)
n Tablet splitting (tablet server initiated)
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Tablet Serving

Image Source: Chang et al., OSDI 2006

“Log Structured Merge Trees”

Tablet representation
n Write Operation

n Updates committed to a commit log
n Recently committed updates are stored in memtable
n Older updates are stored (flushed) to a sequence of SSTables

n Read Operation
n Form a merged-view of SSTables and memtable
n Read <key-value> pair
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Write (cont’d)

Key (CF1 , CF2 , CF3)

Commit Log
Binary serialized 

Key ( CF1 , CF2 , CF3 )

Memtable ( CF1)

Memtable ( CF2)

Memtable ( CF2)

• Data size

• Number of Objects

• Lifetime

Dedicated Disk

<Key name><Size of key Data><Index of columns/supercolumns>< 
Serialized column family> 

---

---

---

---

<Key name><Size of key Data><Index of columns/supercolumns>< 
Serialized column family>

BLOCK Index  <Key Name> Offset, <Key Name> Offset

K128 Offset

K256 Offset

K384 Offset

Bloom Filter

(Index in memory)

Data file on disk
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Deletes and Reads 
n Delete: don’t delete item right away

n Add a tombstone to the log 
n Compaction will eventually remove tombstone and 

delete item

n Read: Similar to writes, except
n A row may be split across multiple SSTables 
=> reads need to touch multiple SSTables => reads 

slower than writes (but still fast)
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Bloom Filter
n Compact way of representing a set of items
n Checking for existence in set is cheap
n Some probability of false positives: an item 

not in set may check true as being in set
n Never false negatives Large Bit Map

0
1
2
3

69

127

111

Key-K
Hash1

Hash2

Hashk

On insert, set all 
hashed bits.

On check-if-present, 
return true if all hashed 
bits set.
• False positives

False positive rate low
• k=4 hash functions
• 100 items
• 3200 bits
• FP rate = 0.02%

.

.
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Compactions
n Minor compaction

n Converts the memtable into an SSTable
n Reduces memory usage and log traffic on restart 

n Merging compaction
n Merging non-full SSTables created by Minor compaction
n Not as thorough as Major compaction, e.g. does not clean-up 

deleted-records during the merge
n Major compaction

n Can be triggered manually (via the HBase shell) or perform in the 
background periodically, e.g. every 24 hours

n Reads the contents of a few SSTables and the memtable, and writes 
out a new SSTable

n Reduces number of SSTables
n Delete stale/excessive versions of a cell 

Key Idea is to trade background writes to speedup subsequent 
Read operations
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Compactions

K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

--

--

--

Sorted

K2 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

--

--

--

Sorted

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

--

--

--

Sorted

MERGE  SORT

K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

Sorted

K1   Offset

K5  Offset

K30  Offset

Bloom Filter

Loaded in memory

Index File

Data File

D E L E T E D
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Bigtable Applications
n Data source and data sink for MapReduce
n Google’s web crawl
n Google Earth
n Google Analytics
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Lessons Learned
n Fault tolerance is hard
n Don’t add functionality before understanding its 

use
n Single-row transactions appear to be sufficient

n Keep it simple!
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HBase is an open-source,  distributed, 
database built on top of HDFS based on 

BigTable! 
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HBase is ..
n A distributed data store that can scale 

horizontally to 1,000s of commodity servers and 
petabytes of indexed storage.

n Designed to operate on top of the Hadoop 
distributed file system (HDFS) or Kosmos File 
System (KFS, aka Cloudstore) for scalability, 
fault tolerance, and high availability.



NoSQL 45

Backdrop
n Started toward by Chad Walters and Jim Kellerman
n 2006.11

n Google releases paper on BigTable
n 2007.2

n Initial HBase prototype created as Hadoop contrib.
n 2007.10

n First useable HBase
n 2008.1

n Hadoop become Apache top-level project and HBase 
becomes subproject

n 2008.10~
n HBase 0.18, 0.19 released
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HBase Storage Model 
(and different Terminologies vs. BigTable)

n Partitioning
n A Table is horizontally partitioned into Regions, each 

region is composed of sequential range of keys
n Each region is managed by a RegionServer

n A RegionServer may hold multiple regions
n Persistence and Data availability

n HBase stores its data in HDFS, it does NOT replicate 
RegionServers and relies on HDFS replication for Data 
Availability

n Region data is cached in-memory
n Updates and Reads are served from in-memory cache 

(Memstore)
n MemStore is flushed periodically to HDFS
n Write Ahead Log (stored in HDFS) is used for 

Durability of updates



NoSQL 47

HBase Architecture
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Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

Small group of servers running
ZAB, a consensus protocol (Paxos-like)

HDFS

HBase Architecture (a more detail view)
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Hfile of HBase = SSTable in BigTable

Source: http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/

SSN:000-01-2345

(For a census table example)

Demographic
Ethnicity
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Strong Consistency: HBase Write-Ahead Log

Write to HLog before writing to MemStore
Thus can recover from failure

Source: http://www.larsgeorge.com/2010/01/hbase-architecture-101-write-ahead-log.html



NoSQL 51

Log Replay

n After recovery from failure, or upon bootup 
(HRegionServer/HMaster)
n Replay any stale logs (use timestamps to find out where 

the database is w.r.t. the logs)
n Replay: add edits to the MemStore

n Keeps one HLog per HRegionServer rather than 
per region
n Avoids many concurrent writes, which on the local file 

system may involve many disk seeks
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HBase API
n API

n get(row)
n put(row, Map<column,value>)
n scan(key range, filter)
n increment(row,columns)
n Check and Put, Delete etc.
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HBase Shell
n HBase shell provides interactive commands for manipulating 

database
n Create/Delete tables
n Insert/Update/Read from tables
n Manage Regions
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HBase Atomic Operations
n HBase provides single row atomic operations

n CheckAndPut – Similar to test-and-set
n CheckAndDelete
n All row operations are atomic no matter how many 

columns are involved
n HBase also provides Row-level exclusive locks

n One can use these locks to implement single row-level 
transactions 
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HBase Characteristics/Features…
n Tables have one primary index, the row key.
n No join operators.
n Scans and queries can select a subset of available 

columns, perhaps by using a wildcard.
n There are three types of lookups:

n Fast lookup using row key and optional timestamp.
n Full table scan
n Range scan from region start to end.
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HBase Characteristics/Features…(2)
n Limited atomicity and transaction support.

n HBase supports multiple batched mutations of single 
rows only.

n Data is unstructured and untyped.
n No accessed or manipulated via SQL.

n Programmatic access via Java, REST, or Thrift APIs.
n Scripting via JRuby, JPython etc.
n BUT this is also changing: as you can now use the 

HiveQL to perform SQL-like queries on data stored in 
HBase tables.
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Connecting to HBase
n Java client

n get(byte [] row, byte [] column, long timestamp, int 
versions);

n Non-Java clients
n Thrift server hosting HBase client instance

n Sample ruby, c++, & java (via thrift) clients
n REST server hosts HBase client

n TableInput/OutputFormat for MapReduce
n HBase as MR source or sink

n HBase Shell
n JRuby IRB with “DSL” to add get, scan, and admin
n ./bin/hbase shell YOUR_SCRIPT
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Why HBase (cont’d) ?
n HBase is a Bigtable clone.
n It is open source
n It has a good community and promise for the future
n It is developed on top of and has good integration 

for the Hadoop platform, if you are using Hadoop 
already.

n It has a Cascading connector.
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HBase benefits over RDBMS
n No real indexes
n Automatic partitioning
n Scale linearly and automatically with new nodes
n Commodity hardware
n Fault tolerance
n Batch processing
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Backup Slides:

More details on HBase
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Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

Small group of servers running
ZAB, a consensus protocol (Paxos-like)

HDFS

Recap: HBase Architecture
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Operation The -ROOT-
table holds the 
list of .META. 
table regions

The .META. 
table holds the 
list of all user-
space regions.
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Members
n Master

n Responsible for monitoring region servers
n Load balancing for regions
n Redirect client to correct region servers

n Regionserver slaves
n Serving requests(Write/Read/Scan) of Client
n Send HeartBeat to Master
n Throughput and Region numbers are scalable by region 

servers
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ZooKeeper

n HBase depends on 
ZooKeeper and by 
default it manages a 
ZooKeeper instance 
as the authority on 
cluster state

n To manage master 
election and server 
availability
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Cross-data center replication
HLog

Zookeeper is actually a file 
system for control information
1. /hbase/replication/state
2. /hbase/replication/peers

/<peer cluster number>
3. /hbase/replication/rs/<hlog>
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Installation (1)

$ wget 
http://ftp.twaren.net/Unix/Web/apache/hadoop/hbase/hbase
-0.20.2/hbase-0.20.2.tar.gz
$ sudo tar -zxvf hbase-*.tar.gz -C /opt/
$ sudo ln -sf /opt/hbase-0.20.2 /opt/hbase
$ sudo chown -R $USER:$USER /opt/hbase 
$ sudo mkdir /var/hadoop/
$ sudo chmod 777  /var/hadoop 

START Hadoop…
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Setup (1)

$ vim  /opt/hbase/conf/hbase-env.sh
export JAVA_HOME=/usr/lib/jvm/java-6-sun

export HADOOP_CONF_DIR=/opt/hadoop/conf
export HBASE_HOME=/opt/hbase
export HBASE_LOG_DIR=/var/hadoop/hbase-logs
export HBASE_PID_DIR=/var/hadoop/hbase-pids
export HBASE_MANAGES_ZK=true
export 
HBASE_CLASSPATH=$HBASE_CLASSPATH:/opt/hadoop/conf 

$ cd /opt/hbase/conf
$ cp /opt/hadoop/conf/core-site.xml ./
$ cp /opt/hadoop/conf/hdfs-site.xml ./
$ cp /opt/hadoop/conf/mapred-site.xml ./ 
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Setup (2)

<configuration>
<property>

<name> name </name>
<value> value </value>

</property> 
</configuration>

Name value
hbase.rootdir hdfs://secuse.nchc.org.tw:9000/hbase 

hbase.tmp.dir /var/hadoop/hbase-${user.name} 
hbase.cluster.distributed true 
hbase.zookeeper.property
.clientPort 

2222 

hbase.zookeeper.quorum Host1, Host2
hbase.zookeeper.property
.dataDir 

/var/hadoop/hbase-data 
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Startup & Stop

$ start-hbase.sh

$ stop-hbase.sh
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Testing (4)
$ hbase shell
> create 'test', 'data'
0 row(s) in 4.3066 seconds
> list
test
1 row(s) in 0.1485 seconds
> put 'test', 'row1', 'data:1', 

'value1'
0 row(s) in 0.0454 seconds
> put 'test', 'row2', 'data:2', 

'value2'
0 row(s) in 0.0035 seconds
> put 'test', 'row3', 'data:3', 

'value3'
0 row(s) in 0.0090 seconds

> scan 'test'
ROW COLUMN+CELL

row1 column=data:1, timestamp=1240148026198, 
value=value1

row2 column=data:2, timestamp=1240148040035, 
value=value2

row3 column=data:3, timestamp=1240148047497, 
value=value3

3 row(s) in 0.0825 seconds
> disable 'test'

09/04/19 06:40:13 INFO client.HBaseAdmin: Disabled 
test

0 row(s) in 6.0426 seconds
> drop 'test'

09/04/19 06:40:17 INFO client.HBaseAdmin: Deleted 
test

0 row(s) in 0.0210 seconds
> list

0 row(s) in 2.0645 seconds
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Thrift

n a software framework for scalable cross-language 
services development. 

n By Facebook
n seamlessly between C++, Java, Python, PHP, and 

Ruby.
n This will start the server instance, by default on port 

9090
n The other similar project “rest”

$ hbase-daemon.sh start thrift
$ hbase-daemon.sh stop thrift



NoSQL 72

References
n Hbase the definitive guide by Lars George, 2011

n http://www.amazon.com/HBase-Definitive-Guide-Lars-
George/dp/1449396100/

n Hadoop: The Definitive Guide, 4th Edition by Tom 
White, 2015
n http://www.amazon.com/Hadoop-Definitive-Guide-Tom-

White/dp/1449311520/

n Introduction to HBase
n trac.nchc.org.tw/cloud/raw-

attachment/wiki/.../hbase_intro.ppt

http://www.amazon.com/HBase-Definitive-Guide-Lars-George/dp/1449396100/
http://www.amazon.com/Hadoop-Definitive-Guide-Tom-White/dp/1449311520/


NoSQL 73

Amazon’s Dynamo
and 

Facebooks’ Cassandra
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Amazon’s Dynamo System
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

n Amazon was interested in improving the scalability 
of their shopping cart service

n A core component widely used within their system
n Functions as a kind of key-value storage solution
n Previous version was a transactional database and, just 

as the BASE folks predicted, wasn’t scalable enough
n Dynamo project created a new version from scratch
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Assumptions and Requirements

n Simple query model
n Values/Objects are small (< 1MB) binary objects

n Stringent latency requirements
n Want  guarantees on 99.9th percentile of latency
e.g., 300ms response time for 99.9% of requests at 

peak load of 500 requests/s
n Non-hostile environment
n No ACID properties

n Single key updates
n No isolation guarantees
n Weaker consistency
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Dynamo's System Interface

Only two operations
n put (key, context, object)

n key: primary key associated with data object
n context: vector clocks (some sort of time-stamp over 

a distributed system) and history (needed for 
merging)

n object: data to store
l get (key)
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Dynamo Design Decisions
l Incremental Scalability

n Must be able to add nodes on-demand with minimal 
impact

l Load Balancing & Exploiting Heterogeneity
l Symmetry

l All nodes are Peers in responsibilities (i.e. a P2P system 
as opposed to a Master/Slave one)

l Avoid Single-Point-of-Failure (SPOF)
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Amazon Service Architecture and 
Service Level Agreement (SLA)

n SLAs are used widely 
at Amazon

n Sub-services must 
meet strict SLAs
n Average-case SLAs 

are not good enough
n Mentioned a cost-

benefit analysis that 
said 99.9% is the right 
number

n Rendering a single 
page can make 
requests to 150 
services
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Dynamo approach
n They made an initial decision to base Dynamo on a 

Chord-like Distributed Hash Table (DHT) structure

n Plan was to run this DHT in Tier 2 of the Amazon 
cloud system, with one instance of Dynamo in each 
Amazon data center and no “linkage” between 
them

n This works because each data center has 
“ownership” for some set of customers and 
handles all of that person’s purchases locally.
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Basic Hashing for Partitioning?

n Consider problem of data partition:  
n Given document X, choose one of k servers to use

n Suppose we use modulo hashing
n Number servers 1..k
n Place X on server i = (X mod k)

n Problem?  Data may not be uniformly distributed

n Place X on server i = hash (X) mod k
n Problem?

n What happens if a server fails or joins (k à k±1)?
n What if different clients have different estimate of k?
n Answer:  Most entries get remapped to new nodes!

80
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Hashing of Web Objects (URLs) to Caches 
(Buckets)

E.g., h(x) = (((a x + b) mod P) mod |B|) , where
P is prime, P > |U|
a,b chosen uniformly at random from ZP
x is a serial number for a web object

Universe U of all possible objects, set B of buckets.

object:  set of web objects with same serial number
bucket: web server/cache

Hash function h: U ® B
Assigns objects to buckets

Source: Akamai
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f(d) = (d + 1) mod 5

Difficulty in changing number of caches 
(buckets)

5   7   10  11  27  29  36  38  40  43

4

3

2

1

0

bucket

object

f(d) = (d + 1) mod 4 Source: Akamai
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Consistent Hashing
Idea:  Map both objects and buckets to unit circle.

object

bucket

Assign object to 
next bucket on 
circle in clockwise 
order.

new bucket

Source: Akamai
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Properties of Consistent Hashing

Monotonicity:  When a bucket is added/removed, 
the only objects affected are those that are/were 
mapped to the bucket.

Balance: Objects are assigned to buckets
“randomly”.

-- can be improved by mapping each bucket 
to multiple places on unit circle

Load: Objects are assigned to buckets evenly, 
even over a set of views.

Spread: An object should be mapped to a 
small number of buckets over a set of 
views. Source: Akamai
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Consistent Hashing
0

4

8

12 Bucket

14• Construction
– Assign n hash buckets to random points 

on mod 2k circle; hash key size = k

– Map object to random position on circle

– Hash of object = closest clockwise bucket

– successor (key) à bucket

• Desired features
– Balanced:  No bucket has disproportionate number of objects

– Smoothness:  Addition/removal of bucket does not cause 
movement among existing buckets (only immediate buckets)

– Spread and load:  Small set of buckets that lie near object

85
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Consistent hashing and failures

n Consider network of n nodes
n If each node has 1 bucket

n Owns 1/nth of keyspace in expectation
n Says nothing of request load per bucket

n If a node fails:
n Its successor takes over bucket
n Achieves smoothness goal:  Only localized shift, not O(n)
n But now successor owns 2 buckets:  keyspace of size 2/n

n Instead, if each node maintains v random nodeIDs, not 1
n “Virtual” nodes spread over ID space, each of size 1 / vn
n Upon failure, v successors take over, each now stores (v+1) / vn

0

4

8

12 Bucket

14

86
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Variant of Consistent Hashing

Each node is
assigned to
multiple points
in the ring
(e.g., B, C, D

store keyrange
(A, B)

A
B

C

DE

F

G

Key K

# of points can
be assigned based
on node’s capacity

If node becomes
unavailable, load is
distributed to others

Consistent hashing: 
nThe o/p range of a hash 
function is treated as a 
fixed circular space or 
“ring”.
Virtual Nodes:
nEach physical node 
(machine) can be 
responsible for more than 
one virtual node.
nFlexible Load 
Balancing, Failure 
handling and dealing with 
server heterogeneity.



NoSQL 88

Replication

A

B

C

DE

F

G

Key K
Coordinator for key K

D stores (A, B], (B, C], (C, D]

B maintains a preference
list for each data item
specifying nodes storing
that item

Preference list skips
virtual nodes in favor of
physical nodes, Why ?
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01

1/2

F

E

D

C

B

A N=3

h(key2)

h(key1)

Partitioning & Replication
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Execution of get () and put () operations

Two Implementation Choices:
1.Route its request through a generic load balancer 
that will select a node based on load information.
2.Use a partition-aware client library that routes 
requests directly to the appropriate coordinator 
nodes.



NoSQL 91

Data Versioning
n A put() call may return to its caller before the 

update has been applied at all the replicas
n A get() call may return many versions of the same 

object.
n Challenge: an object having distinct version sub-histories, 

which the system will need to reconcile in the future.
n Solution: uses vector clocks in order to capture causality 

between different versions of the same object.
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Vector Clock
n A Vector Clock is a list of (node, counter) pairs for tracking the 

partial ordering of events occurring in different nodes 
(processes) within a distributed system.

n Each time a node (process) experiences an internal event, it 
increments its own logical clock (counter) in the vector by one.

n Each time a node prepares to send out a message, it first 
increments its own logical counter in the vector by one before 
sending its entire vector along with the message being sent.

n Each time  a node receives a message, it increments its own 
logical counter in the vector by one and then updates each 
element in its vector by taking the maximum of the value of its 
own vector clock and the value in the vector carried by the 
received message in an element-by-element manner. 
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The Vector Clock
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Version tracking via Vector Clock 
n When a node operates on an object, every version 

of the object will include a copy of the node’s 
current vector clock values.

n If the counters on the first object’s clock are less-
than-or-equal to (and not identical to) all of the 
nodes in a second object’s vector clock counters, 
then the first object is an ancestor of the second 
one and can be forgotten.
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An Example of Version tracking using
Vector Clock
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Vector Clock Example
n A client writes D1 at server SX: 

n D1 ([SX,1]) 
n Another client reads D1, writes back D2; also 

handled by SX: 
n D2 ([SX,2]) (D1 garbage collected) 

n Another client reads D2, writes back D3; handled 
by server SY: 
n D3 ([SX,2], [SY,1]) 

n Another client reads D2, writes back D4; handled 
by server SZ: 
n D4 ([SX,2], [SZ,1]) 

n Another client reads D3, D4: CONFLICT ! 
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Data Versioning

n Updates generate a new timestamp (Vector 
Clock)

n Eventual consistency
l Multiple versions of the same object might co-exist

n Syntactic Reconciliation
l System might be able to resolve conflicts automatically
e.g. Dynamo enforces last-writer-wins

n Semantic Reconciliation
l Conflict resolution pushed to application
e.g., merge conflicting shopping carts
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Quantifying divergent versions (inconsistency)
n In a 24 hour trace

n 99.94% of requests saw exactly one version
n 0.00057% received 2 versions
n 0.00047% received 3 versions
n 0.00009% received 4 versions

n Experience showed that diversion came usually  
from concurrent writers due to automated client 
programs (robots), not humans
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“Quorum-likeness”
n get() & put() driven by two parameters:

n R: the minimum number of replicas to read
n W: the minimum number of replicas to write

n R + W > N  yields a “quorum-like” system
n Latency is dictated by the slowest R (or W) replicas
n Sloppy quorum to tolerate failures

n Replicas can be stored on healthy nodes downstream in the 
ring, with metadata specifying that the replica should be sent 
to the intended recipient later

Þ can result in transient inconsistency, aka only supports 
“eventual” consistency

n More in the next few slides…
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The Challenge in Handling Temp. Failures
n Amazon quickly had their version of Chord up and 

running, but then encountered a problem

n Chord isn’t very “delay tolerant”
n So if a component gets slow or overloaded, Chord was 

very impacted
n Yet delays are common in the cloud (not just due to 

failures, although failure is one reason for problems)

n Team asked: how can Dynamo tolerate delay?
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Idea they had
n Key issue is to find the node on which to store a 

key-value tuple, or one that has the value

n Routing can tolerate delay fairly easily
n Suppose node N99 wants to use the finger to node N20 

and gets no acknowledgement
n Then Dynamo just tries again with node N32
n This works at the “cost” of slight stretch in the routing 

path in the rare cases when it occurs
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Dynamo example: picture

N32

N10

N5

N20
N110

N99

N80 N60

Lookup(K19)

K19

q When N20 is temporarily down or unreachable during a write, send replica 
to N32.

q N32 is hinted that the replica is belong to N20 and it will deliver to N20 
when N20 is recovered.

RESULTS: Dynamo is an “always writeable” data store ; 
Pushes conflict resolution to reads
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What if the actual “home” node fails?
n Suppose that we reach the point at which the next 

hop should take us to the owner for the hashed key
n But the target doesn’t respond

n It may have crashed, or have a scheduling problem 
(overloaded), or be suffering some kind of burst of 
network loss

n All common issues in Amazon’s data centers
n Then they do the Get/Put on the next node that 

actually responds even if this is the “wrong” one!
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Dynamo example in pictures
n Notice:  Ideally, this strategy works perfectly

n Recall that Chord normally replicates a key-value pair on 
a few nodes, so we would expect to see several nodes 
that “know” the current mapping: a shard

n After the intended target recovers the repair code will 
bring it back up to date by copying key-value tuples

n But sometimes Dynamo jumps beyond the target 
“range” and ends up in the wrong shard
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Consequences?
n If this happens, Dynamo will eventually repair itself

n … But meanwhile, some slightly confusing things happen

n Put might succeed, yet a Get might fail on the key

n Could cause user to “buy” the same item twice
n This is a risk they are willing to take because the event is 

rare and the problem can usually be corrected before 
products are shipped in duplicate
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Handling Non-Transient Failures
l Permanent failures: Replica Synchronization

l Synchronize with another node

l Use Merkle Trees to speed-up detection of inconsistencies 
between data stored by replicas
l Anti-Entropy operations: actively compared the content of different 

replicas and update all copies to the latest version 
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Cluster Membership & Failure Detection
n Ring Membership

n Use background gossip to build 1-hop DHT
n Use external entity to bootstrap the system to avoid 

partitioned rings
n Failure Detection

n Use standard gossip, heartbeats, and timeouts to 
implement failure detection

n System state disseminated via Gossiping in 
O(logN) rounds where N = # of nodes in the 
cluster.
n Every T seconds each member increments its 

heartbeat counter and selects one other member to 
send its list to.

n A member merges the list with its own list .
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Cluster Membership – Gossip-Style  

1

1 10120 66
2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol: 

•Nodes periodically gossip 
their membership list

•On receipt, the local 
membership list is updated, 
as shown

•If any heartbeat older than 
Tfail, node is marked as failed

1 10118 64
2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70
4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

Fig and animation by: Dongyun Jin and Thuy Ngyuen

Cassandra uses gossip-based cluster membership
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Gossip-Style Failure Detection

n If the heartbeat has not increased for more than 
Tfail seconds (according to local time), 
the member is considered failed

n But don’t delete it right away
n Wait an additional Tfail seconds, then delete the 

member from the list
n Why?
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n What if an entry pointing to a failed process is deleted 
right after Tfail (= 24) seconds?

n Fix: remember for another 2Tfail

n Ignore gossips for failed members 
n Don’t include failed members in gossip messages

1

1 10120 66

2 10103 62

3 10098 55
4 10111 65

2

4
3

1 10120 66

2 10110 64

3 10098 50
4 10111 65

1 10120 66

2 10110 64

4 10111 65

1 10120 66

2 10110 64
3 10098 75

4 10111 65

Current time : 75 at Process 2

Gossip-Style Failure Detection

Reference: Robbert van Renesse et al, “A Gossip-style Failure Detection Service,” IFIP Middle’98
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Summary of techniques used in 
Dynamo and their advantages

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with 
reconciliation during reads

Version size is decoupled 
from update rates.

Handling temporary 
failures

Sloppy Quorum and 
hinted handoff

Provides high availability 
and durability guarantee 

when some of the replicas 
are not available.

Recovering from 
permanent failures

Anti-entropy using Merkle 
trees

Synchronizes divergent 
replicas in the 
background.

Membership and failure 
detection

Gossip-based 
membership protocol and 

failure detection.

Preserves symmetry and 
avoids having a 

centralized registry for 
storing membership and 

node liveness information.
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Implementation of Dynamo
n Persistent store either Berkeley DB Transactional 

Data Store, BDB Java Edition, MySQL, or in-
memory buffer w/ persistent backend

n All in Java!
n Common N, R, W setting is (3, 2, 2)
n Results are from several hundred nodes configured 

as (3, 2, 2)
n Not clear whether they run in a single datacenter…



NoSQL 117

Werner Vogels on BASE
n He argues that delays as small as 100ms have a 

measurable impact on Amazon’s income!
n People wander off before making purchases
n So snappy response is king

n True, Dynamo has weak consistency and may 
incur some delay to achieve consistency
n There isn’t any real delay “bound”
n But they can hide most of the resulting errors by making 

sure that applications which use Dynamo don’t make 
unreasonable assumptions about how Dynamo will 
behave



Cassandra
Structured Storage System over a P2P Network

Lakshman, Avinash, and Prashant Malik. "Cassandra: a decentralized structured 
storage system." ACM SIGOPS Operating Systems Review 44.2 (2010): 35-40.
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Why Cassandra?
n Lots of data

n Copies of messages, reverse indices of messages, per 
user data.

n Many incoming requests resulting in a lot of 
random reads and random writes.

n No existing production ready solutions in the 
market meet these requirements.
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Design Goals

n High availability
n Eventual consistency

n trade-off strong consistency in favor of high availability
n Incremental scalability
n Optimistic Replication
n “Knobs” to tune tradeoffs between consistency, 

durability and latency
n Low total cost of ownership
n Minimal administration
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Innovation at scale

n Google Bigtable (2006)
n Consistency model: strong
n Data model: sparse map
n Clones: Hbase, Hypertable

n Amazon Dynamo (2007)
n O(1) Distributed Hash Table (DHT)
n Consistency model: Client Tune-able
n Clones: Riak, Voldemort

Cassandra ~= Data-Model of Bigtable/HBase
+ 

P2P DHT infrastructure of Dynamo
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Cassandra: A Proven Technology

n The Facebook stores 150TB of data on 150 nodes

web 2.0
n Used at Twitter, Rackspace, Mahalo, Reddit, 

Cloudkick, Cisco, Digg, SimpleGeo, Ooyala, OpenX, 
others
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Data Model
KEY

ColumnFamily1  Name : MailList Type : Simple Sort : Name

Name : tid1

Value : <Binary>

TimeStamp : t1

Name : tid2

Value : <Binary>

TimeStamp : t2

Name : tid3

Value : <Binary>

TimeStamp : t3

Name : tid4

Value : <Binary>

TimeStamp : t4

ColumnFamily2       Name : WordList Type : Super Sort : Time

Name : aloha

ColumnFamily3  Name : System Type : Super Sort : Name

Name : hint1

<Column List>

Name : hint2

<Column List>

Name : hint3

<Column List>

Name : hint4

<Column List>

C1 

V1

T1

C2

V2

T2

C3

V3

T3

C4

V4

T4

Name : dude

C2 

V2

T2

C6

V6

T6

Column Families 
are declared 

upfront

Columns are 
added and 
modified 

dynamically

SuperColumns 
are added and 

modified 
dynamically

Columns are 
added and 
modified 

dynamically
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Write Operations
n A client issues a write request to a random node in 

the Cassandra cluster.
n The “Partitioner” determines the nodes 

responsible for the data.
n Locally, write operations are logged and then 

applied to an in-memory version.
n Commit log is stored on a dedicated disk local to 

the machine.
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write op
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Write Properties
n No locks in the critical path
n Sequential disk access
n Behaves like a write back Cache
n Append support without read ahead
n Atomicity guarantee for a key
n “Always Writable”

n accept writes during failure scenarios
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Deletes and Reads 
n Delete: don’t delete item right away

n Add a tombstone to the log 
n Compaction will eventually remove tombstone and delete item

n Read: Similar to writes, except
n Coordinator can contacts a number of replicas (e.g., in same 

rack) specified by consistency level
n Forwards read to replicas that have responded quickest in past
n Returns latest timestamp value

n Coordinator also fetches value from multiple replicas
n check consistency in the background, initiating a read-repair if any 

two values are different
n Brings all replicas up to date

n A row may be split across multiple SSTables => reads need to 
touch multiple SSTables => reads slower than writes (but still 
fast)
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Cassandra uses Quorums
n Quorum = way of selecting sets so that any pair of 

sets intersect
n E.g., any arbitrary set with at least Q=N/2 +1 nodes
n Where N = total number of replicas for this key

n Reads
n Wait for R replicas (R specified by clients)
n In the background, check for consistency of remaining N-R 

replicas, and initiate read repair if needed

n Writes come in two default flavors
n Block until quorum is reached
n Async: Write to any node

n R = read replica count, W = write replica count
n If W+R > N and W > N/2, you have consistency, i.e., 

each read returns the latest written value
n Reasonable: (W=1, R=N) or (W=N, R=1) or (W=Q, 

R=Q)
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Read

Query

Closest replica

Cassandra Cluster

Replica A

Result

Replica B Replica C

Digest 
Query

Result

Client

Read repair if 
digests differ

Digest 
Response

Digest 
Response
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Tunable Read Consistency Levels
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Tunable Write Consistency Levels
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BASE: If all writers stop (to a key), then all its values (replicas) 
will converge eventually.
nIf writes continue, then system always tries to keep 
converging.

n Moving “wave” of updated values lagging behind the latest values 
sent by clients, but always trying to catch up

nConverges when R + W > N
n R = # records to read, W = # records to write, N = replication factor

nConsistency Levels: (refer the tables in the previous pages)
n ONE -> R or W is 1
n QUORUM -> R or W is ceiling (N + 1) / 2
n ALL -> R or W is N

nIf you want to write with Consistency Level of ONE and get the 
same data when you read, you need to read with Consistency 
Level of ALL

Eventual Consistency (User Tunable)
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Cluster Membership and 
Failure Detection

n Like Dynamo, Gossip protocol is used by 
Cassandra for cluster membership and failure 
detection.
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Cassandra’s Accrual Failure Detector

n Suspicion mechanisms to adaptively set the timeout
n Valuable for system management, replication, load 

balancing etc.
n Defined as a failure detector that outputs a value, PHI, 

associated with each process. 
n Also known as Adaptive Failure detectors - designed to 

adapt to changing network conditions.
n The value output, PHI, represents a suspicion level.
n Applications set an appropriate threshold, trigger suspicions 

and perform appropriate actions.
n In Cassandra the average time taken to detect a failure is 

10-15 seconds with the PHI threshold set at 5.
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Information Flow in the 
Implementation
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Data Placement Strategies

n Replication Strategy: two options:
1. SimpleStrategy
2. NetworkTopologyStrategy

1. SimpleStrategy: uses the Partitioner
1. RandomPartitioner: Chord-like hash partitioning
2. ByteOrderedPartitioner: Assigns ranges of keys to servers. 

n Easier for range queries (e.g., Get me all twitter users starting 
with [a-b])

2. NetworkTopologyStrategy: for multi-DC deployments
n Two replicas per DC: allows a consistency level of ONE
n Three replicas per DC: allows a consistency level of 

LOCAL_QUORUM
n Per DC

n First replica placed according to Partitioner
n Then go clockwise around ring until you hit different rack
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Snitches

n Maps: IPs to racks and DCs. Configured in 
cassandra.yaml config file

n Some options:
n SimpleSnitch: Unaware of Topology (Rack-unaware)
n RackInferring: Assumes topology of network by octet of 

server’s IP address
n 101.201.301.401 = x.<DC octet>.<rack octet>.<node octet>

n PropertyFileSnitch: uses a config file
n EC2Snitch: uses EC2.

n EC2 Region = DC
n Availability zone = rack

n Other snitch options available
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Performance Benchmark
n Loading of data - limited by network bandwidth.
n Read performance for Facebook Inbox Search in 

production:

Search Interactions Term Search
Min 7.69 ms 7.78 ms
Median 15.69 ms 18.27 ms
Average 26.13 ms 44.41 ms
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MySQL Comparison
n MySQL > 50 GB Data 

Writes Average : ~300 ms
Reads Average : ~350 ms

n Cassandra > 50 GB Data
Writes Average : 0.12 ms
Reads Average : 15 ms
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Lessons Learnt
n Add fancy features only when absolutely required.
n Many types of failures are possible.
n Big systems need proper systems-level monitoring.
n Value simple designs


