
IEMS5730/ IERG4330/ ESTR4316
Spring 2022

Big Data Stores (aka NoSQL Databases)

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

NoSQL 2

Acknowledgements
n The slides used in this chapter are adapted from the following

sources:
n CS5412 Cloud Computing, by Ken Birman, Cornell

n CS498 Cloud Computing, by Roy Campbell and Reza
Farivar, UIUC.

n CS525 Advanced Distributed Systems, by Indranil Gupta,
UIUC

n Slides by Daniel J. Abadi, Yale University

n Perry Hoekstra, Jiaheng Lu, Avinash Lakshman, Prashant
Malik, and Jimmy Lin, “NoSQL and Big Data Processing,
BigTable, Hbase, Cassandra, Hive and Pig”

n All copyrights belong to the original authors of the materials.

NoSQL 3

The NoSQL Movement

NoSQL 4

History of the World, Part 1
n Relational Databases – main stay of business
n Web-based applications caused spikes

n Especially true for public-facing e-Commerce sites
n Developers begin to front RDBMS with memcache or

integrate other caching mechanisms within the application
(ie. Ehcache)

NoSQL 5

Big picture overview

n Client requests are
handled in the “first
tier” by
n PHP or ASP pages
n Associated logic

n These lightweight
services are fast
and very nimble

n Much use of
caching:
the second tier

1
111

1
1

1
1

1 Index
DB

22

Shards

22
2

2
2

2

NoSQL 6

Scaling Up

n Issues with scaling up when the dataset is just too big
n RDBMS were not designed to be distributed
n Began to look at multi-node database solutions
n Known as ‘scaling out’ or ‘horizontal scaling’
n Different approaches include:

n Master-slave
n Sharding

NoSQL 7

Scaling RDBMS – Master/Slave
n Master-Slave

n All writes are written to the master. All reads performed
against the replicated slave databases

n Critical reads may be incorrect as writes may not have been
propagated down

n Large data sets can pose problems as master needs to
duplicate data to slaves

NoSQL 8

Scaling RDBMS via various Sharding approaches
n Vertical Partitioning:

n Have tables related to a specific feature sit on their own server
n May have to rebalance or reshard if tables outgrow server

n Range-based Partitioning:
n When a single table cannot sit on a server, split the rows (aka

horizontal partitioning) of the table onto multiple servers based on
some value range of a column/key

n Key/Hash-based Partitioning
n Input a Key value to a Hash and use the resultant hash output

as entry into multiple servers
n Directory-based Partitioning

n Have a lookup service that has the knowledge of the
partitioning scheme

n This allows for the adding of servers or changing of partition
scheme without changing the application

Source: http://adam.heroku.com/past/2009/7/6/sql_databases_dont_scale

NoSQL 9

Scaling RDBMS – Sharding (cont’d)
n Partition or Sharding

n Scales well for both reads and writes
n Not transparent, application needs to be partition-aware
n Can no longer have relationships/joins across partitions
n Loss of referential integrity across shards

NoSQL 10

Other ways to scale RDBMS
n Multi-Master replication
n INSERT only, not UPDATES/DELETES
n No JOINs, thereby reducing query time

n This involves de-normalizing data
n In-memory databases

NoSQL 11

What is NoSQL?
n Stands for Not Only SQL
n Class of non-relational data storage systems
n Usually do not require a fixed table schema nor do they use

the concept of joins
n All NoSQL offerings relax one or more of the ACID

properties

Note:
ACID = Atomicity, Consistency, Isolation, Durability
BASE = Basic Availability, Soft-state, Eventual consistency

NoSQL 12

How did NoSQL become popular ?

n Explosion of social media sites (Facebook, Twitter)
with large data needs

n Rise of cloud-based solutions such as Amazon S3
(simple storage solution)

n Just as moving to dynamically-typed languages
(Ruby/Groovy), a shift to dynamically-typed data with
frequent schema changes

n Open-source community

NoSQL 13

Seeds of the NoSQL movement
n Three major papers were the seeds of the NoSQL

movement:
n BigTable (Google)
n Dynamo (Amazon)

n Gossip protocol (discovery and error detection)
n Distributed key-value data store
n Eventual consistency

n CAP Theorem: which states that Strict Consistency can't
be achieved at the same time as availability and
partition-tolerance.

NoSQL 14

Why NoSQL and Why Not ?
n For data storage, an RDBMS cannot be the be-all/end-all
n Just as there are different programming languages, need to

have other data storage tools in the toolbox
n A NoSQL solution is more acceptable to a client now than

even a year ago BUT you should hear the arguments from
the other side, e.g. Prof. M. Stonebraker:

n M. Stonebraker, “The NoSQL discussion has nothing to do with SQL,”
Blog@ACM,http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-
nothing-to-do-with-sql/fulltext

n M. Stonebraker, “New SQL: An alternative to NoSQL and Old SQL for new OLTP
Apps,” Blog@CACM, Jun 2011, http://cacm.acm.org/blogs/blog-cacm/109710-new-
sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext

n M. Stonebraker, “OldSQL vs. NoSQL vs. NewSQL on New OLTP,” Usenix LISA
2011, https://www.usenix.org/legacy/events/lisa11/tech/

n There are recent research success in building Scalable, Fully-ACID
compliant transactional distributed database systems, e.g. the Calvin
system from Yale and the “Coordination Avoidance” work by P. Bailis et
al of Berkeley/Stanford in VLDB2015.

mailto:Blog@ACM,http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
http://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
https://www.usenix.org/legacy/events/lisa11/tech/

NoSQL 15

Consistency Model

n A consistency model determines rules for visibility and
apparent order of updates.

n For example:
n Row X is replicated on nodes M and N
n Client A writes row X to node N
n Some period of time t elapses.
n Client B reads row X from node M
n Does client B see the write from client A?
n Consistency is a continuum with tradeoffs
n For NoSQL, the answer would be: maybe

n e.g., Amazon statement of “Usually ships within 2 days”
as it cannot prevent the last copy of an item to be sold multiple

times !

NoSQL 16

What kinds of NoSQL ?
n NoSQL solutions fall into two major areas:

n Key/Value Store or ‘the big hash table’.
n Amazon S3 (Dynamo)
n Voldemort
n Scalaris
n Memcached (in-memory key/value store)
n Redis

n Schema-less which comes in multiple flavors, column-based,
document-based or graph-based.

n Cassandra
n CouchDB (document-based)
n MongoDB(document-based)
n Neo4J (graph-based)
n HBase

n Different NoSQL DBs do support different Consistency
Models, e.g.
n BigTable/HBase: “Strong Consistency” ;
n Dynamo: Eventual Consistency
n Cassandra: User-Tunable (e.g. setting the N,R,W parameters)
n Basic version of Memcached: None

NoSQL 17

Key-Value Store
Pros:

n very fast
n very scalable
n simple model
n able to distribute horizontally

Cons:
- many data structures (objects) can't be easily modeled as key

value pairs

NoSQL 18

Schema-Less

Pros:
- Schema-less data model is richer than key/value

pairs
- Support different type of consistency model:

strict, eventual, or none.
- many are distributed
- still provide excellent performance and scalability

Cons:
- typically no ACID transactions or joins

NoSQL 19

Common Advantages

n Cheap, easy to implement (open source)
n Data are replicated to multiple nodes (therefore

identical and fault-tolerant) and can be partitioned
n Down nodes easily replaced
n No single point of failure

n Easy to distribute
n Don't require a schema
n Can scale up and down
n Relax the data consistency requirement (CAP)

NoSQL 20

What am I giving up?
n joins
n group by
n order by
n ACID transactions
n SQL as a sometimes frustrating but still powerful query

language
n But that’s also changing with Integration support of High-level query

language/systems like Hive/HiveQL
n easy integration with other applications that support SQL

NoSQL 21

Yet Another Comparison of Cloud Datastores

Source: Bill Howe, U. of Washington at Seattle, circa May 2013

NoSQL 22

BigTable from Google
(and its open-source version: HBase)

NoSQL 23

Why Bigtable/HBase ?
n Performance of RDBMS system is good for

transaction processing but for very large scale
analytic processing, the solutions are commercial,
expensive, and specialized.

n Very large scale analytic processing
n Big queries – typically range or table scans.
n Big databases (100s of TB)

NoSQL 24

Why BigTable/HBase ?
n If You need Random Write/Read or both on a large

amount of data (remember GFS/HDFS not good
with random access)

n Distributed storage
n Table-like in data structure

n multi-dimensional map
n High scalability
n High availability
n High performance (1000’s of operations/sec on

Multiple TB of Data)

NoSQL 25

Data Model
n Data is divided into various Tables
n Table is composed of Columns, Columns are grouped into Column

Families (CF)
n A Table is a sparse, distributed, persistent multidimensional sorted

Map
n Map indexed by a Row key, Column key, and a Timestamp

n (row:string, column:string, time:int64) ® uninterpreted byte array

n Supports lookups, inserts, deletes - Single row transactions only

NoSQL 26

Rows and Columns
n Rows maintained in sorted lexicographic order

n Applications can exploit this property for efficient row
scans

n Row ranges dynamically partitioned into tablets
n Columns grouped into column families

n Column key = family:qualifier
n Column families provide locality hints
n Unbounded number of columns

NoSQL 27

Bigtable Building Blocks
n GFS

n Provide raw, fault-tolerant storage for log and data files
n Chubby

n A distributed lock manager
n Based on the Paxos (distributed consensus algorithm) to

keep replicas to be consistent even in the presence of
failures

n SSTable
n A customized file format for storing Big Table data

NoSQL 28

Chubby
n Provide distributed lock service
n Five active replicas, among them, one is elected as the

master and serve the service requests
n Run Paxos algorithm to provide consistency even under

replica failures
n Each directory or file is used as a lock to support atomic

Reads and Writes from/to a file
n Each Chubby client maintains a session with the Chubby

service
n When the session of the client expires, it loses any locks and open

handles

Use of Chubby:
n Store Bootstrap location
n Discover Tablet servers
n Store BigTable Schema information
n Store access control list

NoSQL 29

SSTable

n Basic building block to hold data in Bigtable
n Persistent, ordered immutable map from keys to values

n Stored in GFS

n Sequence of blocks on disk plus an index for block lookup
n Can be completely mapped into memory

n Supported operations:
n Look up value associated with key
n Iterate key/value pairs within a key range

Index

64K
block

64K
block

64K
block

SSTable

Source: Graphic from slides by Erik Paulson

NoSQL 30

Tablet
n Dynamically partitioned range of rows
n Built from multiple SSTables
n Data distribution and Load Balancing are

performed at the granularity of Tablet

Index

64K
block

64K
block

64K
block

SSTable

Index

64K
block

64K
block

64K
block

SSTable

Tablet Start:aardvark End:apple

Source: Graphic from slides by Erik Paulson

NoSQL 31

Table
n Multiple tablets make up the table
n SSTables can be shared

SSTable SSTable SSTable SSTable

Tablet
aardvark apple

Tablet
apple_two_E boat

Source: Graphic from slides by Erik Paulson

NoSQL 32

System Architecture of Big Table
n Client library
n Single Master server

n Assigns tablets to tablet servers
n Detects addition and expiration of tablet servers
n Balances tablet server load
n Handles garbage collection
n Handles schema changes

n Tablet servers
n Each tablet server manages a set of tablets

n Typically between ten to a thousand tablets
n Each 100-200 MB by default

n Handles read and write requests to the tablets
n Splits tablets that have grown too large

NoSQL 33

Tablet Location

Upon discovery, clients cache tablet locations

Image Source: Chang et al., OSDI 2006

n 1st level: Root Tablet contains location of all tablets
n 2nd level: Metadata Tablet contain locations of user

tablets
n 3rd level: User Tablets storing the actual user data

NoSQL 34

Tablet Assignment
n Master keeps track of:

n Set of live tablet servers
n Assignment of tablets to tablet servers
n Unassigned tablets

n Each tablet is assigned to one tablet server at a
time
n Tablet server maintains an exclusive lock on a file in

Chubby
n Master monitors tablet servers and handles assignment

n Changes to tablet structure
n Table creation/deletion (master initiated)
n Tablet merging (master initiated)
n Tablet splitting (tablet server initiated)

NoSQL 35

Tablet Serving

Image Source: Chang et al., OSDI 2006

“Log Structured Merge Trees”

Tablet representation
n Write Operation

n Updates committed to a commit log
n Recently committed updates are stored in memtable
n Older updates are stored (flushed) to a sequence of SSTables

n Read Operation
n Form a merged-view of SSTables and memtable
n Read <key-value> pair

NoSQL 36

Write (cont’d)

Key (CF1 , CF2 , CF3)

Commit Log
Binary serialized

Key (CF1 , CF2 , CF3)

Memtable (CF1)

Memtable (CF2)

Memtable (CF2)

• Data size

• Number of Objects

• Lifetime

Dedicated Disk

<Key name><Size of key Data><Index of columns/supercolumns><
Serialized column family>

<Key name><Size of key Data><Index of columns/supercolumns><
Serialized column family>

BLOCK Index <Key Name> Offset, <Key Name> Offset

K128 Offset

K256 Offset

K384 Offset

Bloom Filter

(Index in memory)

Data file on disk

NoSQL 37

Deletes and Reads
n Delete: don’t delete item right away

n Add a tombstone to the log
n Compaction will eventually remove tombstone and

delete item

n Read: Similar to writes, except
n A row may be split across multiple SSTables
=> reads need to touch multiple SSTables => reads

slower than writes (but still fast)

NoSQL 38

Bloom Filter
n Compact way of representing a set of items
n Checking for existence in set is cheap
n Some probability of false positives: an item

not in set may check true as being in set
n Never false negatives Large Bit Map

0
1
2
3

69

127

111

Key-K
Hash1

Hash2

Hashk

On insert, set all
hashed bits.

On check-if-present,
return true if all hashed
bits set.
• False positives

False positive rate low
• k=4 hash functions
• 100 items
• 3200 bits
• FP rate = 0.02%

.

.

NoSQL 39

Compactions
n Minor compaction

n Converts the memtable into an SSTable
n Reduces memory usage and log traffic on restart

n Merging compaction
n Merging non-full SSTables created by Minor compaction
n Not as thorough as Major compaction, e.g. does not clean-up

deleted-records during the merge
n Major compaction

n Can be triggered manually (via the HBase shell) or perform in the
background periodically, e.g. every 24 hours

n Reads the contents of a few SSTables and the memtable, and writes
out a new SSTable

n Reduces number of SSTables
n Delete stale/excessive versions of a cell

Key Idea is to trade background writes to speedup subsequent
Read operations

NoSQL 40

Compactions

K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

--

--

--

Sorted

K2 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

--

--

--

Sorted

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

--

--

--

Sorted

MERGE SORT

K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

Sorted

K1 Offset

K5 Offset

K30 Offset

Bloom Filter

Loaded in memory

Index File

Data File

D E L E T E D

NoSQL 41

Bigtable Applications
n Data source and data sink for MapReduce
n Google’s web crawl
n Google Earth
n Google Analytics

NoSQL 42

Lessons Learned
n Fault tolerance is hard
n Don’t add functionality before understanding its

use
n Single-row transactions appear to be sufficient

n Keep it simple!

NoSQL 43

HBase is an open-source, distributed,
database built on top of HDFS based on

BigTable!

NoSQL 44

HBase is ..
n A distributed data store that can scale

horizontally to 1,000s of commodity servers and
petabytes of indexed storage.

n Designed to operate on top of the Hadoop
distributed file system (HDFS) or Kosmos File
System (KFS, aka Cloudstore) for scalability,
fault tolerance, and high availability.

NoSQL 45

Backdrop
n Started toward by Chad Walters and Jim Kellerman
n 2006.11

n Google releases paper on BigTable
n 2007.2

n Initial HBase prototype created as Hadoop contrib.
n 2007.10

n First useable HBase
n 2008.1

n Hadoop become Apache top-level project and HBase
becomes subproject

n 2008.10~
n HBase 0.18, 0.19 released

NoSQL 46

HBase Storage Model
(and different Terminologies vs. BigTable)

n Partitioning
n A Table is horizontally partitioned into Regions, each

region is composed of sequential range of keys
n Each region is managed by a RegionServer

n A RegionServer may hold multiple regions
n Persistence and Data availability

n HBase stores its data in HDFS, it does NOT replicate
RegionServers and relies on HDFS replication for Data
Availability

n Region data is cached in-memory
n Updates and Reads are served from in-memory cache

(Memstore)
n MemStore is flushed periodically to HDFS
n Write Ahead Log (stored in HDFS) is used for

Durability of updates

NoSQL 47

HBase Architecture

NoSQL 48
Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

Small group of servers running
ZAB, a consensus protocol (Paxos-like)

HDFS

HBase Architecture (a more detail view)

NoSQL 49

Hfile of HBase = SSTable in BigTable

Source: http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/

SSN:000-01-2345

(For a census table example)

Demographic
Ethnicity

NoSQL 50

Strong Consistency: HBase Write-Ahead Log

Write to HLog before writing to MemStore
Thus can recover from failure

Source: http://www.larsgeorge.com/2010/01/hbase-architecture-101-write-ahead-log.html

NoSQL 51

Log Replay

n After recovery from failure, or upon bootup
(HRegionServer/HMaster)
n Replay any stale logs (use timestamps to find out where

the database is w.r.t. the logs)
n Replay: add edits to the MemStore

n Keeps one HLog per HRegionServer rather than
per region
n Avoids many concurrent writes, which on the local file

system may involve many disk seeks

NoSQL 52

HBase API
n API

n get(row)
n put(row, Map<column,value>)
n scan(key range, filter)
n increment(row,columns)
n Check and Put, Delete etc.

NoSQL 53

HBase Shell
n HBase shell provides interactive commands for manipulating

database
n Create/Delete tables
n Insert/Update/Read from tables
n Manage Regions

NoSQL 54

HBase Atomic Operations
n HBase provides single row atomic operations

n CheckAndPut – Similar to test-and-set
n CheckAndDelete
n All row operations are atomic no matter how many

columns are involved
n HBase also provides Row-level exclusive locks

n One can use these locks to implement single row-level
transactions

NoSQL 55

HBase Characteristics/Features…
n Tables have one primary index, the row key.
n No join operators.
n Scans and queries can select a subset of available

columns, perhaps by using a wildcard.
n There are three types of lookups:

n Fast lookup using row key and optional timestamp.
n Full table scan
n Range scan from region start to end.

NoSQL 56

HBase Characteristics/Features…(2)
n Limited atomicity and transaction support.

n HBase supports multiple batched mutations of single
rows only.

n Data is unstructured and untyped.
n No accessed or manipulated via SQL.

n Programmatic access via Java, REST, or Thrift APIs.
n Scripting via JRuby, JPython etc.
n BUT this is also changing: as you can now use the

HiveQL to perform SQL-like queries on data stored in
HBase tables.

NoSQL 57

Connecting to HBase
n Java client

n get(byte [] row, byte [] column, long timestamp, int
versions);

n Non-Java clients
n Thrift server hosting HBase client instance

n Sample ruby, c++, & java (via thrift) clients
n REST server hosts HBase client

n TableInput/OutputFormat for MapReduce
n HBase as MR source or sink

n HBase Shell
n JRuby IRB with “DSL” to add get, scan, and admin
n ./bin/hbase shell YOUR_SCRIPT

NoSQL 58

Why HBase (cont’d) ?
n HBase is a Bigtable clone.
n It is open source
n It has a good community and promise for the future
n It is developed on top of and has good integration

for the Hadoop platform, if you are using Hadoop
already.

n It has a Cascading connector.

NoSQL 59

HBase benefits over RDBMS
n No real indexes
n Automatic partitioning
n Scale linearly and automatically with new nodes
n Commodity hardware
n Fault tolerance
n Batch processing

NoSQL 60

Backup Slides:

More details on HBase

NoSQL 61
Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

Small group of servers running
ZAB, a consensus protocol (Paxos-like)

HDFS

Recap: HBase Architecture

NoSQL 62

Operation The -ROOT-
table holds the
list of .META.
table regions

The .META.
table holds the
list of all user-
space regions.

NoSQL 63

Members
n Master

n Responsible for monitoring region servers
n Load balancing for regions
n Redirect client to correct region servers

n Regionserver slaves
n Serving requests(Write/Read/Scan) of Client
n Send HeartBeat to Master
n Throughput and Region numbers are scalable by region

servers

NoSQL 64

ZooKeeper

n HBase depends on
ZooKeeper and by
default it manages a
ZooKeeper instance
as the authority on
cluster state

n To manage master
election and server
availability

NoSQL 65

Cross-data center replication
HLog

Zookeeper is actually a file
system for control information
1. /hbase/replication/state
2. /hbase/replication/peers

/<peer cluster number>
3. /hbase/replication/rs/<hlog>

NoSQL 66

Installation (1)

$ wget
http://ftp.twaren.net/Unix/Web/apache/hadoop/hbase/hbase
-0.20.2/hbase-0.20.2.tar.gz
$ sudo tar -zxvf hbase-*.tar.gz -C /opt/
$ sudo ln -sf /opt/hbase-0.20.2 /opt/hbase
$ sudo chown -R $USER:$USER /opt/hbase
$ sudo mkdir /var/hadoop/
$ sudo chmod 777 /var/hadoop

START Hadoop…

NoSQL 67

Setup (1)

$ vim /opt/hbase/conf/hbase-env.sh
export JAVA_HOME=/usr/lib/jvm/java-6-sun

export HADOOP_CONF_DIR=/opt/hadoop/conf
export HBASE_HOME=/opt/hbase
export HBASE_LOG_DIR=/var/hadoop/hbase-logs
export HBASE_PID_DIR=/var/hadoop/hbase-pids
export HBASE_MANAGES_ZK=true
export
HBASE_CLASSPATH=$HBASE_CLASSPATH:/opt/hadoop/conf

$ cd /opt/hbase/conf
$ cp /opt/hadoop/conf/core-site.xml ./
$ cp /opt/hadoop/conf/hdfs-site.xml ./
$ cp /opt/hadoop/conf/mapred-site.xml ./

NoSQL 68

Setup (2)

<configuration>
<property>

<name> name </name>
<value> value </value>

</property>
</configuration>

Name value
hbase.rootdir hdfs://secuse.nchc.org.tw:9000/hbase

hbase.tmp.dir /var/hadoop/hbase-${user.name}
hbase.cluster.distributed true
hbase.zookeeper.property
.clientPort

2222

hbase.zookeeper.quorum Host1, Host2
hbase.zookeeper.property
.dataDir

/var/hadoop/hbase-data

NoSQL 69

Startup & Stop

$ start-hbase.sh

$ stop-hbase.sh

NoSQL 70

Testing (4)
$ hbase shell
> create 'test', 'data'
0 row(s) in 4.3066 seconds
> list
test
1 row(s) in 0.1485 seconds
> put 'test', 'row1', 'data:1',

'value1'
0 row(s) in 0.0454 seconds
> put 'test', 'row2', 'data:2',

'value2'
0 row(s) in 0.0035 seconds
> put 'test', 'row3', 'data:3',

'value3'
0 row(s) in 0.0090 seconds

> scan 'test'
ROW COLUMN+CELL

row1 column=data:1, timestamp=1240148026198,
value=value1

row2 column=data:2, timestamp=1240148040035,
value=value2

row3 column=data:3, timestamp=1240148047497,
value=value3

3 row(s) in 0.0825 seconds
> disable 'test'

09/04/19 06:40:13 INFO client.HBaseAdmin: Disabled
test

0 row(s) in 6.0426 seconds
> drop 'test'

09/04/19 06:40:17 INFO client.HBaseAdmin: Deleted
test

0 row(s) in 0.0210 seconds
> list

0 row(s) in 2.0645 seconds

NoSQL 71

Thrift

n a software framework for scalable cross-language
services development.

n By Facebook
n seamlessly between C++, Java, Python, PHP, and

Ruby.
n This will start the server instance, by default on port

9090
n The other similar project “rest”

$ hbase-daemon.sh start thrift
$ hbase-daemon.sh stop thrift

NoSQL 72

References
n Hbase the definitive guide by Lars George, 2011

n http://www.amazon.com/HBase-Definitive-Guide-Lars-
George/dp/1449396100/

n Hadoop: The Definitive Guide, 4th Edition by Tom
White, 2015
n http://www.amazon.com/Hadoop-Definitive-Guide-Tom-

White/dp/1449311520/

n Introduction to HBase
n trac.nchc.org.tw/cloud/raw-

attachment/wiki/.../hbase_intro.ppt

http://www.amazon.com/HBase-Definitive-Guide-Lars-George/dp/1449396100/
http://www.amazon.com/Hadoop-Definitive-Guide-Tom-White/dp/1449311520/

NoSQL 73

Amazon’s Dynamo
and

Facebooks’ Cassandra

NoSQL 74

Amazon’s Dynamo System
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

n Amazon was interested in improving the scalability
of their shopping cart service

n A core component widely used within their system
n Functions as a kind of key-value storage solution
n Previous version was a transactional database and, just

as the BASE folks predicted, wasn’t scalable enough
n Dynamo project created a new version from scratch

NoSQL 75

Assumptions and Requirements

n Simple query model
n Values/Objects are small (< 1MB) binary objects

n Stringent latency requirements
n Want guarantees on 99.9th percentile of latency
e.g., 300ms response time for 99.9% of requests at

peak load of 500 requests/s
n Non-hostile environment
n No ACID properties

n Single key updates
n No isolation guarantees
n Weaker consistency

NoSQL 76

Dynamo's System Interface

Only two operations
n put (key, context, object)

n key: primary key associated with data object
n context: vector clocks (some sort of time-stamp over

a distributed system) and history (needed for
merging)

n object: data to store
l get (key)

NoSQL 77

Dynamo Design Decisions
l Incremental Scalability

n Must be able to add nodes on-demand with minimal
impact

l Load Balancing & Exploiting Heterogeneity
l Symmetry

l All nodes are Peers in responsibilities (i.e. a P2P system
as opposed to a Master/Slave one)

l Avoid Single-Point-of-Failure (SPOF)

NoSQL 78

Amazon Service Architecture and
Service Level Agreement (SLA)

n SLAs are used widely
at Amazon

n Sub-services must
meet strict SLAs
n Average-case SLAs

are not good enough
n Mentioned a cost-

benefit analysis that
said 99.9% is the right
number

n Rendering a single
page can make
requests to 150
services

NoSQL 79

Dynamo approach
n They made an initial decision to base Dynamo on a

Chord-like Distributed Hash Table (DHT) structure

n Plan was to run this DHT in Tier 2 of the Amazon
cloud system, with one instance of Dynamo in each
Amazon data center and no “linkage” between
them

n This works because each data center has
“ownership” for some set of customers and
handles all of that person’s purchases locally.

NoSQL 80

Basic Hashing for Partitioning?

n Consider problem of data partition:
n Given document X, choose one of k servers to use

n Suppose we use modulo hashing
n Number servers 1..k
n Place X on server i = (X mod k)

n Problem? Data may not be uniformly distributed

n Place X on server i = hash (X) mod k
n Problem?

n What happens if a server fails or joins (k à k±1)?
n What if different clients have different estimate of k?
n Answer: Most entries get remapped to new nodes!

80

NoSQL 81

Hashing of Web Objects (URLs) to Caches
(Buckets)

E.g., h(x) = (((a x + b) mod P) mod |B|) , where
P is prime, P > |U|
a,b chosen uniformly at random from ZP
x is a serial number for a web object

Universe U of all possible objects, set B of buckets.

object: set of web objects with same serial number
bucket: web server/cache

Hash function h: U ® B
Assigns objects to buckets

Source: Akamai

NoSQL 82

f(d) = (d + 1) mod 5

Difficulty in changing number of caches
(buckets)

5 7 10 11 27 29 36 38 40 43

4

3

2

1

0

bucket

object

f(d) = (d + 1) mod 4 Source: Akamai

NoSQL 83

Consistent Hashing
Idea: Map both objects and buckets to unit circle.

object

bucket

Assign object to
next bucket on
circle in clockwise
order.

new bucket

Source: Akamai

NoSQL 84

Properties of Consistent Hashing

Monotonicity: When a bucket is added/removed,
the only objects affected are those that are/were
mapped to the bucket.

Balance: Objects are assigned to buckets
“randomly”.

-- can be improved by mapping each bucket
to multiple places on unit circle

Load: Objects are assigned to buckets evenly,
even over a set of views.

Spread: An object should be mapped to a
small number of buckets over a set of
views. Source: Akamai

NoSQL 85

Consistent Hashing
0

4

8

12 Bucket

14• Construction
– Assign n hash buckets to random points

on mod 2k circle; hash key size = k

– Map object to random position on circle

– Hash of object = closest clockwise bucket

– successor (key) à bucket

• Desired features
– Balanced: No bucket has disproportionate number of objects

– Smoothness: Addition/removal of bucket does not cause
movement among existing buckets (only immediate buckets)

– Spread and load: Small set of buckets that lie near object

85

NoSQL 86

Consistent hashing and failures

n Consider network of n nodes
n If each node has 1 bucket

n Owns 1/nth of keyspace in expectation
n Says nothing of request load per bucket

n If a node fails:
n Its successor takes over bucket
n Achieves smoothness goal: Only localized shift, not O(n)
n But now successor owns 2 buckets: keyspace of size 2/n

n Instead, if each node maintains v random nodeIDs, not 1
n “Virtual” nodes spread over ID space, each of size 1 / vn
n Upon failure, v successors take over, each now stores (v+1) / vn

0

4

8

12 Bucket

14

86

NoSQL 87

Variant of Consistent Hashing

Each node is
assigned to
multiple points
in the ring
(e.g., B, C, D

store keyrange
(A, B)

A
B

C

DE

F

G

Key K

of points can
be assigned based
on node’s capacity

If node becomes
unavailable, load is
distributed to others

Consistent hashing:
nThe o/p range of a hash
function is treated as a
fixed circular space or
“ring”.
Virtual Nodes:
nEach physical node
(machine) can be
responsible for more than
one virtual node.
nFlexible Load
Balancing, Failure
handling and dealing with
server heterogeneity.

NoSQL 88

Replication

A

B

C

DE

F

G

Key K
Coordinator for key K

D stores (A, B], (B, C], (C, D]

B maintains a preference
list for each data item
specifying nodes storing
that item

Preference list skips
virtual nodes in favor of
physical nodes, Why ?

NoSQL 89

01

1/2

F

E

D

C

B

A N=3

h(key2)

h(key1)

Partitioning & Replication

NoSQL 90

Execution of get () and put () operations

Two Implementation Choices:
1.Route its request through a generic load balancer
that will select a node based on load information.
2.Use a partition-aware client library that routes
requests directly to the appropriate coordinator
nodes.

NoSQL 91

Data Versioning
n A put() call may return to its caller before the

update has been applied at all the replicas
n A get() call may return many versions of the same

object.
n Challenge: an object having distinct version sub-histories,

which the system will need to reconcile in the future.
n Solution: uses vector clocks in order to capture causality

between different versions of the same object.

NoSQL 92

Vector Clock
n A Vector Clock is a list of (node, counter) pairs for tracking the

partial ordering of events occurring in different nodes
(processes) within a distributed system.

n Each time a node (process) experiences an internal event, it
increments its own logical clock (counter) in the vector by one.

n Each time a node prepares to send out a message, it first
increments its own logical counter in the vector by one before
sending its entire vector along with the message being sent.

n Each time a node receives a message, it increments its own
logical counter in the vector by one and then updates each
element in its vector by taking the maximum of the value of its
own vector clock and the value in the vector carried by the
received message in an element-by-element manner.

NoSQL 93

The Vector Clock

NoSQL 94

Version tracking via Vector Clock
n When a node operates on an object, every version

of the object will include a copy of the node’s
current vector clock values.

n If the counters on the first object’s clock are less-
than-or-equal to (and not identical to) all of the
nodes in a second object’s vector clock counters,
then the first object is an ancestor of the second
one and can be forgotten.

NoSQL 95

An Example of Version tracking using
Vector Clock

NoSQL 96

Vector Clock Example
n A client writes D1 at server SX:

n D1 ([SX,1])
n Another client reads D1, writes back D2; also

handled by SX:
n D2 ([SX,2]) (D1 garbage collected)

n Another client reads D2, writes back D3; handled
by server SY:
n D3 ([SX,2], [SY,1])

n Another client reads D2, writes back D4; handled
by server SZ:
n D4 ([SX,2], [SZ,1])

n Another client reads D3, D4: CONFLICT !

NoSQL 97

Data Versioning

n Updates generate a new timestamp (Vector
Clock)

n Eventual consistency
l Multiple versions of the same object might co-exist

n Syntactic Reconciliation
l System might be able to resolve conflicts automatically
e.g. Dynamo enforces last-writer-wins

n Semantic Reconciliation
l Conflict resolution pushed to application
e.g., merge conflicting shopping carts

NoSQL 98

Quantifying divergent versions (inconsistency)
n In a 24 hour trace

n 99.94% of requests saw exactly one version
n 0.00057% received 2 versions
n 0.00047% received 3 versions
n 0.00009% received 4 versions

n Experience showed that diversion came usually
from concurrent writers due to automated client
programs (robots), not humans

NoSQL 99

“Quorum-likeness”
n get() & put() driven by two parameters:

n R: the minimum number of replicas to read
n W: the minimum number of replicas to write

n R + W > N yields a “quorum-like” system
n Latency is dictated by the slowest R (or W) replicas
n Sloppy quorum to tolerate failures

n Replicas can be stored on healthy nodes downstream in the
ring, with metadata specifying that the replica should be sent
to the intended recipient later

Þ can result in transient inconsistency, aka only supports
“eventual” consistency

n More in the next few slides…

NoSQL 100

The Challenge in Handling Temp. Failures
n Amazon quickly had their version of Chord up and

running, but then encountered a problem

n Chord isn’t very “delay tolerant”
n So if a component gets slow or overloaded, Chord was

very impacted
n Yet delays are common in the cloud (not just due to

failures, although failure is one reason for problems)

n Team asked: how can Dynamo tolerate delay?

NoSQL 101

Idea they had
n Key issue is to find the node on which to store a

key-value tuple, or one that has the value

n Routing can tolerate delay fairly easily
n Suppose node N99 wants to use the finger to node N20

and gets no acknowledgement
n Then Dynamo just tries again with node N32
n This works at the “cost” of slight stretch in the routing

path in the rare cases when it occurs

NoSQL 102

Dynamo example: picture

N32

N10

N5

N20
N110

N99

N80 N60

Lookup(K19)

K19

q When N20 is temporarily down or unreachable during a write, send replica
to N32.

q N32 is hinted that the replica is belong to N20 and it will deliver to N20
when N20 is recovered.

RESULTS: Dynamo is an “always writeable” data store ;
Pushes conflict resolution to reads

NoSQL 103

What if the actual “home” node fails?
n Suppose that we reach the point at which the next

hop should take us to the owner for the hashed key
n But the target doesn’t respond

n It may have crashed, or have a scheduling problem
(overloaded), or be suffering some kind of burst of
network loss

n All common issues in Amazon’s data centers
n Then they do the Get/Put on the next node that

actually responds even if this is the “wrong” one!

NoSQL 104

Dynamo example in pictures
n Notice: Ideally, this strategy works perfectly

n Recall that Chord normally replicates a key-value pair on
a few nodes, so we would expect to see several nodes
that “know” the current mapping: a shard

n After the intended target recovers the repair code will
bring it back up to date by copying key-value tuples

n But sometimes Dynamo jumps beyond the target
“range” and ends up in the wrong shard

NoSQL 105

Consequences?
n If this happens, Dynamo will eventually repair itself

n … But meanwhile, some slightly confusing things happen

n Put might succeed, yet a Get might fail on the key

n Could cause user to “buy” the same item twice
n This is a risk they are willing to take because the event is

rare and the problem can usually be corrected before
products are shipped in duplicate

NoSQL 106

Handling Non-Transient Failures
l Permanent failures: Replica Synchronization

l Synchronize with another node

l Use Merkle Trees to speed-up detection of inconsistencies
between data stored by replicas
l Anti-Entropy operations: actively compared the content of different

replicas and update all copies to the latest version

NoSQL 107

Cluster Membership & Failure Detection
n Ring Membership

n Use background gossip to build 1-hop DHT
n Use external entity to bootstrap the system to avoid

partitioned rings
n Failure Detection

n Use standard gossip, heartbeats, and timeouts to
implement failure detection

n System state disseminated via Gossiping in
O(logN) rounds where N = # of nodes in the
cluster.
n Every T seconds each member increments its

heartbeat counter and selects one other member to
send its list to.

n A member merges the list with its own list .

NoSQL 108

NoSQL 109

NoSQL 110

NoSQL 111

NoSQL 112

Cluster Membership – Gossip-Style

1

1 10120 66
2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol:

•Nodes periodically gossip
their membership list

•On receipt, the local
membership list is updated,
as shown

•If any heartbeat older than
Tfail, node is marked as failed

1 10118 64
2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70
4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

Fig and animation by: Dongyun Jin and Thuy Ngyuen

Cassandra uses gossip-based cluster membership

NoSQL 113

Gossip-Style Failure Detection

n If the heartbeat has not increased for more than
Tfail seconds (according to local time),
the member is considered failed

n But don’t delete it right away
n Wait an additional Tfail seconds, then delete the

member from the list
n Why?

NoSQL 114

n What if an entry pointing to a failed process is deleted
right after Tfail (= 24) seconds?

n Fix: remember for another 2Tfail

n Ignore gossips for failed members
n Don’t include failed members in gossip messages

1

1 10120 66

2 10103 62

3 10098 55
4 10111 65

2

4
3

1 10120 66

2 10110 64

3 10098 50
4 10111 65

1 10120 66

2 10110 64

4 10111 65

1 10120 66

2 10110 64
3 10098 75

4 10111 65

Current time : 75 at Process 2

Gossip-Style Failure Detection

Reference: Robbert van Renesse et al, “A Gossip-style Failure Detection Service,” IFIP Middle’98

NoSQL 115

Summary of techniques used in
Dynamo and their advantages

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with
reconciliation during reads

Version size is decoupled
from update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high availability
and durability guarantee

when some of the replicas
are not available.

Recovering from
permanent failures

Anti-entropy using Merkle
trees

Synchronizes divergent
replicas in the
background.

Membership and failure
detection

Gossip-based
membership protocol and

failure detection.

Preserves symmetry and
avoids having a

centralized registry for
storing membership and

node liveness information.

NoSQL 116

Implementation of Dynamo
n Persistent store either Berkeley DB Transactional

Data Store, BDB Java Edition, MySQL, or in-
memory buffer w/ persistent backend

n All in Java!
n Common N, R, W setting is (3, 2, 2)
n Results are from several hundred nodes configured

as (3, 2, 2)
n Not clear whether they run in a single datacenter…

NoSQL 117

Werner Vogels on BASE
n He argues that delays as small as 100ms have a

measurable impact on Amazon’s income!
n People wander off before making purchases
n So snappy response is king

n True, Dynamo has weak consistency and may
incur some delay to achieve consistency
n There isn’t any real delay “bound”
n But they can hide most of the resulting errors by making

sure that applications which use Dynamo don’t make
unreasonable assumptions about how Dynamo will
behave

Cassandra
Structured Storage System over a P2P Network

Lakshman, Avinash, and Prashant Malik. "Cassandra: a decentralized structured
storage system." ACM SIGOPS Operating Systems Review 44.2 (2010): 35-40.

NoSQL 119

Why Cassandra?
n Lots of data

n Copies of messages, reverse indices of messages, per
user data.

n Many incoming requests resulting in a lot of
random reads and random writes.

n No existing production ready solutions in the
market meet these requirements.

NoSQL 120

Design Goals

n High availability
n Eventual consistency

n trade-off strong consistency in favor of high availability
n Incremental scalability
n Optimistic Replication
n “Knobs” to tune tradeoffs between consistency,

durability and latency
n Low total cost of ownership
n Minimal administration

NoSQL 121

Innovation at scale

n Google Bigtable (2006)
n Consistency model: strong
n Data model: sparse map
n Clones: Hbase, Hypertable

n Amazon Dynamo (2007)
n O(1) Distributed Hash Table (DHT)
n Consistency model: Client Tune-able
n Clones: Riak, Voldemort

Cassandra ~= Data-Model of Bigtable/HBase
+

P2P DHT infrastructure of Dynamo

NoSQL 122

Cassandra: A Proven Technology

n The Facebook stores 150TB of data on 150 nodes

web 2.0
n Used at Twitter, Rackspace, Mahalo, Reddit,

Cloudkick, Cisco, Digg, SimpleGeo, Ooyala, OpenX,
others

NoSQL 123

Data Model
KEY

ColumnFamily1 Name : MailList Type : Simple Sort : Name

Name : tid1

Value : <Binary>

TimeStamp : t1

Name : tid2

Value : <Binary>

TimeStamp : t2

Name : tid3

Value : <Binary>

TimeStamp : t3

Name : tid4

Value : <Binary>

TimeStamp : t4

ColumnFamily2 Name : WordList Type : Super Sort : Time

Name : aloha

ColumnFamily3 Name : System Type : Super Sort : Name

Name : hint1

<Column List>

Name : hint2

<Column List>

Name : hint3

<Column List>

Name : hint4

<Column List>

C1

V1

T1

C2

V2

T2

C3

V3

T3

C4

V4

T4

Name : dude

C2

V2

T2

C6

V6

T6

Column Families
are declared

upfront

Columns are
added and
modified

dynamically

SuperColumns
are added and

modified
dynamically

Columns are
added and
modified

dynamically

NoSQL 124

Write Operations
n A client issues a write request to a random node in

the Cassandra cluster.
n The “Partitioner” determines the nodes

responsible for the data.
n Locally, write operations are logged and then

applied to an in-memory version.
n Commit log is stored on a dedicated disk local to

the machine.

NoSQL 125

write op

NoSQL 126

Write Properties
n No locks in the critical path
n Sequential disk access
n Behaves like a write back Cache
n Append support without read ahead
n Atomicity guarantee for a key
n “Always Writable”

n accept writes during failure scenarios

NoSQL 127

Deletes and Reads
n Delete: don’t delete item right away

n Add a tombstone to the log
n Compaction will eventually remove tombstone and delete item

n Read: Similar to writes, except
n Coordinator can contacts a number of replicas (e.g., in same

rack) specified by consistency level
n Forwards read to replicas that have responded quickest in past
n Returns latest timestamp value

n Coordinator also fetches value from multiple replicas
n check consistency in the background, initiating a read-repair if any

two values are different
n Brings all replicas up to date

n A row may be split across multiple SSTables => reads need to
touch multiple SSTables => reads slower than writes (but still
fast)

NoSQL 128

Cassandra uses Quorums
n Quorum = way of selecting sets so that any pair of

sets intersect
n E.g., any arbitrary set with at least Q=N/2 +1 nodes
n Where N = total number of replicas for this key

n Reads
n Wait for R replicas (R specified by clients)
n In the background, check for consistency of remaining N-R

replicas, and initiate read repair if needed

n Writes come in two default flavors
n Block until quorum is reached
n Async: Write to any node

n R = read replica count, W = write replica count
n If W+R > N and W > N/2, you have consistency, i.e.,

each read returns the latest written value
n Reasonable: (W=1, R=N) or (W=N, R=1) or (W=Q,

R=Q)

NoSQL 129

Read

Query

Closest replica

Cassandra Cluster

Replica A

Result

Replica B Replica C

Digest
Query

Result

Client

Read repair if
digests differ

Digest
Response

Digest
Response

NoSQL 130

Tunable Read Consistency Levels

NoSQL 131

Tunable Write Consistency Levels

NoSQL 132

BASE: If all writers stop (to a key), then all its values (replicas)
will converge eventually.
nIf writes continue, then system always tries to keep
converging.

n Moving “wave” of updated values lagging behind the latest values
sent by clients, but always trying to catch up

nConverges when R + W > N
n R = # records to read, W = # records to write, N = replication factor

nConsistency Levels: (refer the tables in the previous pages)
n ONE -> R or W is 1
n QUORUM -> R or W is ceiling (N + 1) / 2
n ALL -> R or W is N

nIf you want to write with Consistency Level of ONE and get the
same data when you read, you need to read with Consistency
Level of ALL

Eventual Consistency (User Tunable)

NoSQL 133

Cluster Membership and
Failure Detection

n Like Dynamo, Gossip protocol is used by
Cassandra for cluster membership and failure
detection.

NoSQL 134

Cassandra’s Accrual Failure Detector

n Suspicion mechanisms to adaptively set the timeout
n Valuable for system management, replication, load

balancing etc.
n Defined as a failure detector that outputs a value, PHI,

associated with each process.
n Also known as Adaptive Failure detectors - designed to

adapt to changing network conditions.
n The value output, PHI, represents a suspicion level.
n Applications set an appropriate threshold, trigger suspicions

and perform appropriate actions.
n In Cassandra the average time taken to detect a failure is

10-15 seconds with the PHI threshold set at 5.

NoSQL 135

Information Flow in the
Implementation

NoSQL 136

Data Placement Strategies

n Replication Strategy: two options:
1. SimpleStrategy
2. NetworkTopologyStrategy

1. SimpleStrategy: uses the Partitioner
1. RandomPartitioner: Chord-like hash partitioning
2. ByteOrderedPartitioner: Assigns ranges of keys to servers.

n Easier for range queries (e.g., Get me all twitter users starting
with [a-b])

2. NetworkTopologyStrategy: for multi-DC deployments
n Two replicas per DC: allows a consistency level of ONE
n Three replicas per DC: allows a consistency level of

LOCAL_QUORUM
n Per DC

n First replica placed according to Partitioner
n Then go clockwise around ring until you hit different rack

NoSQL 137

Snitches

n Maps: IPs to racks and DCs. Configured in
cassandra.yaml config file

n Some options:
n SimpleSnitch: Unaware of Topology (Rack-unaware)
n RackInferring: Assumes topology of network by octet of

server’s IP address
n 101.201.301.401 = x.<DC octet>.<rack octet>.<node octet>

n PropertyFileSnitch: uses a config file
n EC2Snitch: uses EC2.

n EC2 Region = DC
n Availability zone = rack

n Other snitch options available

NoSQL 138

Performance Benchmark
n Loading of data - limited by network bandwidth.
n Read performance for Facebook Inbox Search in

production:

Search Interactions Term Search
Min 7.69 ms 7.78 ms
Median 15.69 ms 18.27 ms
Average 26.13 ms 44.41 ms

NoSQL 139

MySQL Comparison
n MySQL > 50 GB Data

Writes Average : ~300 ms
Reads Average : ~350 ms

n Cassandra > 50 GB Data
Writes Average : 0.12 ms
Reads Average : 15 ms

NoSQL 140

Lessons Learnt
n Add fancy features only when absolutely required.
n Many types of failures are possible.
n Big systems need proper systems-level monitoring.
n Value simple designs

